提及什么叫奇函数和偶函数?以及奇函数定义?的相关内容,许多人不太了解,来看看小俭的介绍吧!
什么叫奇函数和偶函数?
奇函数和偶函数是数学中一个很基础的概念。如果函数f(-x)=-f(x),那它被称为奇函数。因为当镜面对称轴对奇函数的图象取反时,它的形状是不变的。例如,sin(x)是一个奇函数。
相反,如果函数f(-x)=f(x),那它被称为偶函数。因为当镜面对称轴对偶函数的图象取反时,它的形状是不变的。例如,cos(x)是一个偶函数。
在实际应用中,我们可以使用奇偶函数性质简化一些计算。例如,如果我们要计算一个对称函数在对称轴两侧的积分,则可以简单地将对称轴两侧的积分合并成一个,并将积分范围缩小一半。
奇函数定义?
奇函数是指在定义域上满足函数值对于自变量关于原点对称的函数。
即对于所有$x$,都有$f(-x)=-f(x)$。
这个定义可以具体理解为,当自变量为正时,函数值与自变量为负时相反,如正弦函数$sin(x)$就是一个奇函数。
奇函数具有许多特殊性质,如在对称轴处为$0$等。