垂径定理及推论(垂径定理及推论)

垂径定理及推论?

垂径定理及其推论:

定理:

垂直于弦的直径平分弦,并且平分弦所对的两条弧。

推论:

平分弦(不是直径)的直径;垂直于弦,并且平分弦所对的两条弧;弦的垂直垂直平分线经过圆心,并且平分弦所对的两条弧;平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;在同圆或者等圆中,两条平行弦所夹的弧相等。

1、垂径定理及其推论是证明线段相等、弧相等、角相等的重要依据。

在圆中解有关弦的问题时,经常做垂直于弦的直径作为辅助线。

2、垂径定理:

如果一条直线垂直于一条弦,并且过圆心,那么这条直线平分弦并且平分弦所对的两条弧。

条件是直线垂于于弦,直线平分弦,直线过圆心,直线平分弦所对的弧。

3、如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,并且平分这条弦所对的弧。

垂径定理是圆的重要性质之一,它是证明圆内线段、角相等、垂直关系的重要依据,也为圆中的计算、证明和作图提供了依据、思路和方法。

垂径定理及推论?

垂径定理及其推论:

定理:

垂直于弦的直径平分弦,并且平分弦所对的两条弧。

推论:

平分弦(不是直径)的直径;垂直于弦,并且平分弦所对的两条弧;弦的垂直垂直平分线经过圆心,并且平分弦所对的两条弧;平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;在同圆或者等圆中,两条平行弦所夹的弧相等。

1、垂径定理及其推论是证明线段相等、弧相等、角相等的重要依据。

在圆中解有关弦的问题时,经常做垂直于弦的直径作为辅助线。

2、垂径定理:

如果一条直线垂直于一条弦,并且过圆心,那么这条直线平分弦并且平分弦所对的两条弧。

条件是直线垂于于弦,直线平分弦,直线过圆心,直线平分弦所对的弧。

3、如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,并且平分这条弦所对的弧。

垂径定理是圆的重要性质之一,它是证明圆内线段、角相等、垂直关系的重要依据,也为圆中的计算、证明和作图提供了依据、思路和方法。

三角形垂径定理?

垂径定理是:垂直与弦的直径平分这条弦,并且平分这条弦所对的两段弧推论一:平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧推论四:在同圆或者等圆中,两条平行弦所夹的弧相等(证明时的理论依据就是上面的五条定理)但是在做不需要写证明过程的题目中,可以用下面的方法进行判断:在5个条件中:1.平分弦所对的一条弧2.平分弦所对的另一条弧3.平分弦4.垂直于弦5.经过圆心(或者说直径)只要具备任意两个条件,就可以推出其他的三个结论。

垂径定理及其推论?

首先垂径定理及其推论:

定理:

垂直于弦的直径平分弦,并且平分弦所对的两条弧。

推论:

平分弦(不是直径)的直径;垂直于弦,并且平分弦所对的两条弧;弦的垂直垂直平分线经过圆心,并且平分弦所对的两条弧;平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;在同圆或者等圆中,两条平行弦所夹的弧相等。

垂径定理内容是什么啊?

垂径定理的内容指的是垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,同时也是数学平面几何(圆)中的一个定理,且该定理也是圆的重要性质之一。

垂径定理是证明圆内线段、角相等、垂直关系的重要依据,也为圆中的计算、证明和作图提供了依据、思路和方法

微信扫一扫,分享到朋友圈

垂径定理及推论(垂径定理及推论)
返回顶部

显示

忘记密码?

显示

显示

获取验证码

Close