提及分式方程的性质公式?(一元分式函数的性质?)的相关内容,许多人不太了解,来看看小信的介绍吧!
分式方程的性质公式?
分式方程解法方程两边同乘以最简公分母。
一元分式函数的性质?
分式函数,形如f(x)=p(x)/q(x)的函数叫做分式函数,其中p(x)、q(x)是既约整式且q(x)的次数不低于一次.。
中文名称分式函数
公式f(x)=p(x)/q(x)
定义域{x|x≠-b/a}
值域{y|y≠a/c}
分式的基本性质?
一、分式的定义
(1)分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子A/B叫做分式.
(2)因为0不能做除数,所以分式的分母不能为0.
(3)分式是两个整式相除的商,分子就是被除式,分母就是除式,而分数线可以理解为除号,还兼有括号的作用.
(4)分式的分母必须含有字母,而分子可以含字母,也可以不含字母,亦即从形式上看符合分式概念的形式,从本质上看分母必须含有字母,同时,分母不等于零,且只看初始状态,不要化简.
二、分式有意义的条件
(1)分式有意义的条件是分母不等于零.
(2)分式无意义的条件是分母等于零.
(3)分式的值为正数的条件是分子、分母同号.
(4)分式的值为负数的条件是分子、分母异号.
三、分式的值为零的条件
分式值为零的条件是分子等于零且分母不等于零.
注意:“分母不为零”这个条件不能少.
四、分式的值
分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.
五、分式的基本性质
(1)分式的基本性质:
分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.
(2)分式中的符号法则:
分子、分母、分式本身同时改变两处的符号,分式的值不变.
【方法技巧】利用分式的基本性质可解决的问题
1.分式中的系数化整问题:当分子、分母的系数为分数或小数时,应用分数的性质将分式的分子、分母中的系数化为整数.
2.解决分式中的变号问题:分式的分子、分母及分式本身的三个符号,改变其中的任何两个,分式的值不变,注意分子、分母是多项式时,分子、分母应为一个整体,改变符号是指改变分子、分母中各项的符号.
3.处理分式中的恒等变形问题:分式的约分、通分都是利用分式的基本性质变形的.
六、最简分式
最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式.和分数不能化简一样,叫最简分数.
七、约分
(1)约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.
(2)确定公因式要分为系数、字母、字母的指数来分别确定.
①分式约分的结果可能是最简分式,也可能是整式.
②当分子与分母含有负号时,一般把负号提到分式本身的前面.
③约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.
(3)规律方法总结:由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.
分式的基本性质和等式的基本性质2?
分式的基本性质的内容是:分式的分子和分母同时乘以或除以不等于0的同一个整式,分式的值不变。
等式的基本性质2的内容是等式的左右两边都乘以或者除以同一个不等于0的数,还是等式。
分式的基本性质主要是用在分式的通分或者约分的时候,等式的基本性质二是用在解方程的时候。
分式性质的作用是什么?
分式的基本性质是分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。
分式的概念包括3个方面:
①分式是两个整式相除的商式,其中分子为被除数,分母为除数,分数线起除号(或括号)的作用;
②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;
③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。这里,分母是指除式而言。而不是只就分母中某一个字母来说的。也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。
分式的概念及基本性质?
分式
判断一个式子是否是分式,要看式子是否是A/B的形式,关键要满足:
(1)分式的分母中必须含有字母。
(2)分母的值不能为零。
由于字母可以表示不同的数,所以分式比分数更具有一般性。
整式和分式统称为有理式。无理式和有理式统称代数式。
不能化简后再看,6X/3X也是分式。
两个分式相乘,用分子的积作为积的分子,分母的积作为积的分母。
两个分式相除,把除式的分子和分母颠倒位置(除数的倒数)后再与被除式相乘。
同分母的分式相加减,分母不变,把分子相加减。