椭圆焦点三角形面积公式(椭圆焦点三角形面积公式三个)

提及椭圆焦点三角形面积公式,挺多人想要了解相关的消息,那么下面来看看。

椭圆的焦点三角形是指以椭圆的两个焦点F1,F2与椭圆上任意一点P为顶点组成的三角形。焦点三角形面积公式是S=b²·tan(θ/2)(θ为焦点三角形的顶角)。

椭圆的焦点三角形是指以椭圆的两个焦点F1,F2与椭圆上任意一点P(不与焦点共线)为顶点组成的三角形。椭圆的焦点三角形性质为:

(1)|PF1|+|PF2|=2a

(2)4c²=|PF1|²+|PF2|²-2|PF1|·|PF2|·cosθ

(3)周长=2a+2c

(4)面积=S=b²·tan(θ/2)(∠F1PF2=θ)

证明:

设P为椭圆上的任意一点P(不与焦点共线)。

∠F2F1P=α,∠F1F2P=β,∠F1PF2=θ。

则有离心率e=sin(α+β)/(sinα+sinβ)。

焦点三角形面积S=b²·tan(θ/2)。

微信扫一扫,分享到朋友圈

椭圆焦点三角形面积公式(椭圆焦点三角形面积公式三个)
返回顶部

显示

忘记密码?

显示

显示

获取验证码

Close