法向量是什么?(法向量怎么算?)

提及法向量是什么?(法向量怎么算?)的相关内容,许多人不太了解,来看看小威的介绍吧!

法向量是什么?

法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。

法向量怎么算?

在空间直角坐标系下

求出法向量所垂直的平面内两条不平行的直线的方向向量

设为(x1,y1,z1)(x2,y2,z2)

显然平面的法向量(x,y,z)与两直线方向向量垂直

即得xx1+yy1+zz1=0,xx2+yy2+zz2=0

将任一未知量取一特殊值(如1),则另外两个未知量可得

即可求出法向量

法向量的定义?

法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。

法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。

定义

三维平面的法线是垂直于该平面的三维向量。曲面在某点P处的法线为垂直于该点切平面(tangentplane)的向量。

法线是与多边形(polygon)的曲面垂直的理论线,一个平面(plane)存在无限个法向量(normalvector)。在电脑图学(computergraphics)的领域里,法线决定着曲面与光源(lightsource)的浓淡处理(FlatShading),对于每个点光源位置,其亮度取决于曲面法线的方向。

如果一个非零向量n与平面a垂直,则称向量n为平面a的法向量。

垂直于平面的直线所表示的向量为该平面的法向量。每一个平面存在无数个法向量。

计算

对于像三角形这样的多边形来说,多边形两条相互不平行的边的叉积就是多边形的法线。[1]

用方程ax+by+cz=d表示的平面,向量(a,b,c)就是其法线。

如果S是曲线坐标x(s,t)表示的曲面,其中s及t是实数变量,那么用偏导数叉积表示的法线为

。

如果曲面S用隐函数表示,点集合(x,y,z)满足F(x,y,z)=0,那么在点(x,y,z)处的曲面法线用梯度表示为

。

如果曲面在某点没有切平面,那么在该点就没有法线。例如,圆锥的顶点以及底面的边线处都没有法线,但是圆锥的法线是几乎处处存在的。通常一个满足Lipschitz连续的曲面可以认为法线几乎处处存在。

什么是法向量?

法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。

三维平面的法线是垂直于该平面的三维向量。曲面在某点P处的法线为垂直于该点切平面(tangentplane)的向量。

法线是与多边形(polygon)的曲面垂直的理论线,一个平面(plane)存在无限个法向量(normalvector)。在电脑图学(computergraphics)的领域里,法线决定着曲面与光源(lightsource)的浓淡处理(FlatShading),对于每个点光源位置,其亮度取决于曲面法线的方向。

如果一个非零向量n与平面a垂直,则称向量n为平面a的法向量。

垂直于平面的直线所表示的向量为该平面的法向量。每一个平面存在无数个法向量。

什么是法向量?

法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。

三维平面的法线是垂直于该平面的三维向量。曲面在某点P处的法线为垂直于该点切平面(tangentplane)的向量。

法向量怎么计算公式?

法向量的求法:

      在空间直角坐标系下求出法向量所垂直的平面内两条不平行的直线的方向向量,设为(x1,y1,z1)(x2,y2,z2)显然平面的法向量(x,y,z)与两直线方向向量垂直即得xx1+yy1+zz1=0,xx2+yy2+zz2=0。

     将任一未知量取一特殊值,则另外两个未知量可得即可求出法向量。

微信扫一扫,分享到朋友圈

法向量是什么?(法向量怎么算?)
返回顶部

显示

忘记密码?

显示

显示

获取验证码

Close