提及空间两向量平行的公式,挺多人想要了解相关的消息,那么下面来看看。
空间两向量平行的公式是两个空间向量a,b向量(b向量不等于0),a/b的充要条件是存在唯一的实数λ,使a=λb。
空间向量平行公式证明:
1.充分性:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由实数与向量的积的定义,向量a与b共线。
2.必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即∣b∣=m∣a∣。
那么当向量a与b同方向时,令λ=m,有b=λa,当向量a与b反方向时,令λ=-m,有b=λa。如果b=0,那么λ=0。