什么叫不定积分?(不定积分计算方法和技巧?)

提及什么叫不定积分?(不定积分计算方法和技巧?)的相关内容,许多人不太了解,来看看小孝的介绍吧!

什么叫不定积分?

不定积分

 释义:微积分

 的重要概念。如果在区间i内,f′=f,那么函数f就称为f在区间i内的原函数

 。原函数的一般表达式f+c(c是任一常数)称为f的不定积分,记作∫fdx=f+c,并称f为被积函数,c为积分常数。

不定积分的几何意义是被积函数与坐标轴

 围成的面积,x轴之上部分为正,x轴之下部分为负,根据cosx在[0,2π]区间的图像可知,正负面积相等,因此其代数和等于0。

若F是f的一个原函数,则称y=F(x)的图像为f的一条积分曲线。f的不定积分在几何上表示f的某一积分曲线沿着纵轴方向任意平移,所得到的一切积分曲线所组成的曲线族。

不定积分计算方法和技巧?

一、积分公式法

直接利用积分公式求出不定积分。

二、换元积分法

换元积分法可分为第一类换元法与第二类换元法。

1、第一类换元法(即凑微分法)

通过凑微分,最后依托于某个积分公式。进而求得原不定积分。

2、注:第二类换元法的变换式必须可逆,并且在相应区间上是单调的。

第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。常用的换元手段有两种:

(1)根式代换法。

(2)三角代换法。

在实际应用中,代换法最常见的是链式法则,而往往用此代替前面所说的换元。

三、分部积分法

设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu,两边积分,得分部积分公式:∫udv=uv-∫vdu⑴。

称公式⑴为分部积分公式。如果积分∫vdu易于求出,则左端积分式随之得到。

分部积分公式运用成败的关键是恰当地选择u,v。

不定积分的公式

1、∫adx=ax+C,a和C都是常数

2、∫x^adx=[x^(a+1)]/(a+1)+C,其中a为常数且a≠-1

3、∫1/xdx=ln|x|+C

4、∫a^xdx=(1/lna)a^x+C,其中a>0且a≠1

5、∫e^xdx=e^x+C

6、∫cosxdx=sinx+C

7、∫sinxdx=-cosx+C

8、∫cotxdx=ln|sinx|+C=-ln|cscx|+C

不定积分定义?

如果函数f(x)在区间I上有原函数,那么称f(x)在I上的全体原函数组成的函数族为函数f(x)在区间I上的不定积分,记为∫f(x)dx,其中记号∫称为积分号,f(x)称为被积函数,f(x)dx称为被积表达式,x称为积分变量.

在微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′=f。

不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。

什么叫不定积分?

不定积分

 释义:微积分

 的重要概念。如果在区间i内,f′=f,那么函数f就称为f在区间i内的原函数

 。原函数的一般表达式f+c(c是任一常数)称为f的不定积分,记作∫fdx=f+c,并称f为被积函数,c为积分常数。

不定积分的几何意义是被积函数与坐标轴

 围成的面积,x轴之上部分为正,x轴之下部分为负,根据cosx在[0,2π]区间的图像可知,正负面积相等,因此其代数和等于0。

若F是f的一个原函数,则称y=F(x)的图像为f的一条积分曲线。f的不定积分在几何上表示f的某一积分曲线沿着纵轴方向任意平移,所得到的一切积分曲线所组成的曲线族。

不定积分计算方法和技巧?

一、积分公式法

直接利用积分公式求出不定积分。

二、换元积分法

换元积分法可分为第一类换元法与第二类换元法。

1、第一类换元法(即凑微分法)

通过凑微分,最后依托于某个积分公式。进而求得原不定积分。

2、注:第二类换元法的变换式必须可逆,并且在相应区间上是单调的。

第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。常用的换元手段有两种:

(1)根式代换法。

(2)三角代换法。

在实际应用中,代换法最常见的是链式法则,而往往用此代替前面所说的换元。

三、分部积分法

设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu,两边积分,得分部积分公式:∫udv=uv-∫vdu⑴。

称公式⑴为分部积分公式。如果积分∫vdu易于求出,则左端积分式随之得到。

分部积分公式运用成败的关键是恰当地选择u,v。

不定积分的公式

1、∫adx=ax+C,a和C都是常数

2、∫x^adx=[x^(a+1)]/(a+1)+C,其中a为常数且a≠-1

3、∫1/xdx=ln|x|+C

4、∫a^xdx=(1/lna)a^x+C,其中a>0且a≠1

5、∫e^xdx=e^x+C

6、∫cosxdx=sinx+C

7、∫sinxdx=-cosx+C

8、∫cotxdx=ln|sinx|+C=-ln|cscx|+C

不定积分定义?

如果函数f(x)在区间I上有原函数,那么称f(x)在I上的全体原函数组成的函数族为函数f(x)在区间I上的不定积分,记为∫f(x)dx,其中记号∫称为积分号,f(x)称为被积函数,f(x)dx称为被积表达式,x称为积分变量.

在微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′=f。

不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。

微信扫一扫,分享到朋友圈

什么叫不定积分?(不定积分计算方法和技巧?)
返回顶部

显示

忘记密码?

显示

显示

获取验证码

Close